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Abstract: A new super resolution Bayesian method for 
pansharpening multispectral images which incorporates sensor 
characteristics to model the observation process of both the 
panchromatic and the multispectral images is presented in this 
paper. The quality of the pansharpened images is assessed both 
qualitatively and quantitatively. Preliminary results are very 
promising: the method succeeded in preserving the spectral 
information while increasing the spatial resolution of the Landsat 
ETM+ multispectral image. Further research will focus on 
extending the method to fuse imagery acquired by other sensors. 

1. Introduction  
Pansharpening is a fusion technique used to increase the 

spatial resolution of a multispectral image by combining it with 
a high spatial resolution panchromatic (PAN) image. This PAN 
image is typically acquired from the same platform and 
simultaneously (or in a very short time span) with the 
multispectral image.  

Several pansharpening methods, some of them using super 
resolution techniques, have been proposed in the literature (see 
Molina et al., 2005 for a short review). In this paper, a new 
super resolution Bayesian method for multispectral images is 
presented. The method incorporates sensor characteristics to 
model the observation process of both the panchromatic and 
the observed multispectral images and also uses prior 
knowledge to model the expected structure of the high 
resolution multispectral image that we want to estimate.  

Let us assume that the multispectral image, y, that we 
would observe under ideal conditions with a high resolution 
sensor consists of B bands, each one of size p=m × n pixels, is 
expressed as the column vector formed by the image bands, 
that is, y = [y1t, y2t, …, yBt]t where t denotes the transpose of a 
vector or matrix and each band of this multispectral image is 
written as a column vector by lexicographically ordering its 
pixels as yb = [yb(1,1), yb(1,2), …, yb(m,n)]t, b=1,2,…,B. In real 
applications, this image, y, is not available and, instead, we 
observe a low resolution multispectral image, Y, with P=M × 
N pixels, M<m and N<n, in each of the B bands. Using the 
previously described ordering, we have Y = [Y1t, Y2t, …, YBt]t, 
where the low resolution observed bands are expressed as the 
column vectors Yb= [Yb(1,1), Yb(1,2), …, Yb(M,N)]t, b=1,2,…,B. 
Additionally, we observe the high resolution panchromatic 
image x, of size p=m × n pixels, which using the 
lexicographical ordering can be expressed as the column vector 
x=[x(1,1), x(1,2), …, x(m,n)]t. 

Our aim is to reconstruct the multispectral image y from its 
corresponding observed low resolution multispectral image Y 

and the high resolution panchromatic image x.  

The proposed method uses a linear combination of the high 
resolution multispectral bands, yb, to reproduce the information 
contained in the PAN image, that is, 
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where  are known quantities that weight the 
contribution of each high spatial resolution multispectral band 
to the PAN image and ρ is the observation noise assumed to be 
Gaussian with zero mean and variance 1/γ.  
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Each high resolution (also called pansharped) band is 
furthermore forced to preserve the spectral fidelity to its 
corresponding low resolution observed band, mathematically, 

 Yb = Hb yb+ηb, (2) 
where the matrix Hb is an integration and decimation operator 
specifically designed to reproduce the (measured) low 
resolution band from the reconstructed high resolution band 
and ηb is the observation noise assumed to be Gaussian with 
zero mean and variance 1/βb. 

2. Bayesian modelling and inference 
Prior knowledge about the smoothness of the object 

luminosity distribution within each band makes it possible to 
model the distribution of y by a simultaneous auto-regression, 
SAR (Alvarez et al., 2004), that is, 

 p(y) = const × ∏b exp{-½ αb || C yb||2}, (3) 
where const is a constant, C denotes the Laplacian operator, 
and αb is the inverse of the variance of the Gaussian 
distribution. 

Given the degradation model for the PAN image described 
in Eq. (1), the distribution of the panchromatic image x given y 
is defined by  
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We also need to specify the distribution of the observed 
multispectral image Y given y which, from the degradation 
model described by Eq. (2), is given by  

 p(Y | y) = const × ∏b exp{- ½βb ||Yb - Hb yb ||2}. (5) 
Note that, in this formulation, we are not considering any 
cross-band degradation. 



The Bayesian paradigm dictates that inference about the 
true y should be based on p(y | Y, x) given by 

 .      (6) 
Maximization of this equation with respect to y yields the 
maximum a posteriori (MAP) estimate of y.  
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In this study, the optimization of Eq. (6) is carried out by a 
cyclic coordinate-descent optimization procedure (Luenberger, 
1984) which, to minimize the global cost function, minimizes 
the cost function with respect to each band in a cyclic fashion; 
that is, for each iteration of the algorithm, each yb is optimized 
while keeping the rest of the bands yb, b= {j=1,…,B, j ≠ b}, 
fixed. When yb has been updated, the next band is computed 
following the same procedure.  

Thus, for fixed yb, by substituting Eqs. (3), (4), and (5) into 
Eq. (6) and maximizing with respect to yb we obtain 
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Minimization of this equation can be carried out by the 
following iterative gradient descendent algorithm 
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where and are the high resolution estimates of the 
band b at the (i+1)-th and i-st iteration steps, respectively, and 
φ is the relaxation parameter that controls the convergence of 
the algorithm. 
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The process is summarized by the following algorithm: 

1. Select an initial value yb for each b =1, 2…, B. 

2. For each band b=1, 2, …, B 

a. Set i=0, yb
old = yb, and yb

0=yb. 

b. Compute yb
i+1 according to Eq. (9). 

c. If |yb
i+1 − yb

i|> µ then i=i+1 and goto step 2.b. 

d. Set yb = yb
i+1. 

3. If |yb−yb
old|>ε for at least one band b, goto step 2. 

3. Experiments and results 
To illustrate the theoretical analysis developed in the 

previous section an orthorectified Landsat 7 ETM+ image 
covering the central part of The Netherlands was selected for 
this study.  

The image was acquired over The Netherlands on May 13, 
2000. Orthorectified images are images already corrected from 
terrain and/or satellite viewing geometry and with accurate 
geodetic coordinates (see Tucker et al., 2004 for a more 
detailed review on the characteristics of the Landsat 
orthorectified dataset). Orthorectified images are delivered with 
all the spectral bands at their native spatial resolution which is 
of 14.25m for the PAN image and 28.5 for the multispectral 
bands. The digital numbers of the image were transformed into 

radiance values by applying the gains and offsets that have 
been published for this sensor. 

A subset of 1024 by 1024 pixels of the multispectral image 
plus its corresponding 2048 by 2048 pixels of the PAN image 
were selected for high resolution image reconstruction 
(pansharpening). The central part of the selected subset, 
centered on 52.453°N, 5.876°E, is depicted in Figure 1.  

 
 

Figure 1.  Original Landsat ETM+ image: (left) PAN band. (right) from left 
to right and top down, the multispectral bands 1 to 4. 

Figure 2 depicts the (normalized to one) sensor response for 
each band of the Landsat 7 ETM+ image. Note that the PAN 
band covers the spectral region from almost the end of band 1 
until the end of band 4, and that the sensor spectral response is 
not constant over the whole range. The values of λb in Eq. (4) 
were obtained from the spectral response of the ETM+ sensor 
by summing up the spectral response of the PAN band for each 
multispectral band range and, subsequently, normalizing them 
to add to one (Table 1) . Notice that λ5 and λ7 are both zero 
because the bands 5 and 7 do not spectrally overlap with the 
PAN band. 

 
Figure 2.  Landsat 7 ETM+ band spectral response. 

TABLE I.  OBTAINED VALUES FOR ΛB 

Band 1 2 3 4 5 7 
λb 0.015606 0.22924 0.25606 0.49823 0.0 0.0 

 

The parameters of the Bayesian model were experimentally 
chosen to be αb = 0.01 and βb = 1.0, for all the bands, and γ = 
0.3. The initial value for each high resolution band yb, b =1, 2, 
…, B, in the algorithm step 1 was obtained by cubic 
interpolation of its corresponding low resolution band Yb and 
the iterative procedure thresholds were selected to be µ = 0.01 
and ε = 0.01. The obtained pansharpened image is shown in 
Figure 3. 



 
Figure 3.  From left to right and top down: Fused image bands 1, 2, 3 and 4. 

A qualitative and quantitative analysis of the pansharpend 
image was performed to assess the spectral and spatial quality 
of the estimated high resolution image. A visual comparison of 
the upsampled observed and the pansharpened images indicates 
that the reconstructed image significantly enhances the spatial 
content of the observed multispectral image.  

For the quantitative analysis, five main quality indices were 
selected: ERGAS (Wald, 2002), the normalized RMSE (or 
RMSEnorm, which equals the spectral RMSE divided by the 
mean radiance of each band), the mean bias, the coefficient of 
correlation of the details of the PAN image and the 
pansharpened image, COR (Tsai, 2004) and, the universal 
image quality index , UIQI (Wang and Bovik, 2004). 

ERGAS is an adimensional index that summarizes the 
spectral quality of a reconstructed image. In order to compare 
the pansharpened bands with the observed (multispectral) ones, 
the pansharpened image was first resampled to 28.5m using a 
mean filter. An ERGAS value of 1.808 was obtained for this 
image. This value indicates a good reconstruction because 
according to Wald (2002) when the ERGAS is below 3.0 then 
the reconstruction can be considered as a success.  

The values for the rest of the indices are summarized in 
Table II. Notice the low RMSEnorm values and the very close 
to zero values of the bias of the mean radiance for each band. 
The COR values for bands 2, 3, and 4 are relatively high, 
indicating a successfully incorporation of the PAN details into 
the pansharpened bands, whereas for band 1 the COR is poor. 
This poor value can be explained by looking at Table I where it 
can be observed that band 1 has the lowest contribution to the 
PAN signal. Therefore the details of this band do not 
necessarily have to match the ones of the PAN image. Finally, 
the UIQI values between the resampled to 28.5m pansharpened 

bands and the multispectral bands are presented. The UIQI 
accounts for the loss of correlation and the radiometric and 
contrast distortions between two images. If both images are 
identical the UIQI equals to 1. In this case, band 1 presents the 
best UIQI value while the rest of the bands present a lower but 
still very good (>0.9) UIQI values.  

TABLE II.  QUANTITATIVE EVALUATION OF THE FUSED IMAGE 

Index B1 B2 B3 B4 
RMSEnorm 0.0019 0.0316 0.0505 0.0410 

Mean bias -0.0007 -0.0142 -0.0160 -0.0310 

COR 0.1163 0.7921 0.7502 0.8152 

UIQI 0.9996 0.9489 0.9543 0.9683 

4. Conclusions and Outlook 
A new super resolution Bayesian method for pansharpening 

multispectral images has been presented. The performance of 
this pansharpening method has been assessed both qualitatively 
and quantitatively. The results are very promising, since the 
method succeeded in preserving the spectral information 
(ERGAS=1.808) while increasing the spatial resolution of 
Landsat 7 ETM+ multispectral bands. Further research will 
focus on extending the method to pansharpen imagery acquired 
by other sensors. 
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